

EMBERS – D1.2, page 1 of 18

HORIZON 2020

Information and Communication Technologies
Integrating experiments and facilities in FIRE+

Deliverable D1.2
Infrastructure Description

Grant Agreement number: 687992

Project acronym: EMBERS

Project title: Enabling a Mobility Back-End as a Robust Service

Type of action: Innovation Action (IA)

Project website address: www.embers-project.eu

Due date of deliverable: 2016-08-31

Dissemination Level

PU Public X

CO Confidential, only for members of the consortium (including the Commission Services)

EMBERS – D1.2, page 2 of 18

Document properties

Leader partner Fraunhofer (FhG)

Author(s)/editor(s) Thomas Günther (FhG), Ricardo Vitorino & André Duarte (UW),
Saint-Marcel Frédéric (INRIA)

Version 0.5

Abstract
There are currently many IoT middleware’s that mainly addressing specific sectors and make it
difficult for a customer to choose from the variety of available platforms and technologies. They are
often implemented based on proprietary protocols or data information models. That causes vendor
lock and hinders flexibility or integration of additional devices or technologies that might be required
later on.

The EMBERS project addresses such problems, while providing an infrastructure with standardized
open APIs. Supported standards will be OneM2M, ETSI M2M and OMA NGSI that make use of
widely used application protocols like HTTP, CoAP and MQTT. This gives developers and IoT
platform operators the freedom to choose their preferred technologies, while still interoperable with
other standard compliant devices and applications.

This document contains a generic infrastructure description addressing the identified requirements
for the platform. Furthermore, services and capabilities of the involved FIRE+ testbeds are specified
as well as project relevant modifications. Additionally, deployments scenarios of the IoT backend and
sensor nodes are discussed. It concludes with the events specific infrastructure requirements that
have been identified to support a hackathon, app challenge and open call.	

EMBERS – D1.2, page 3 of 18

Table of Contents

Table	of	Contents	...	3	
1	 Introduction	...	4	
1.1	 Generic	EMBERS	Infrastructure	...	5	

2	 Preparation	and	Enhancement	of	FIRE+	testbeds	..	6	
2.1	 FIT	IoT-LAB	...	6	
2.2	 FUSECO	Playground	...	8	

3	 Deployment	Scenarios	...	11	
3.1	 M2M	gateway/sensor	deployments	..	11	
3.2	 Server-side	deployments	..	12	

4	 Event	Infrastructure	Set-Up	...	16	
5	 Conclusions	...	17	
6	 References	...	18	

EMBERS – D1.2, page 4 of 18

1 Introduction

The Internet of Things (IoT) market is currently fragmented, with many vendors developing their own
proprietary solutions. Particularly municipalities demand open, standardised interfaces which provide
flexibility and also cost savings. With the purpose of making Smart Cities a reality, interoperable
communication platforms need to support various devices and applications, hence EMBERS is
providing a Mobility Back-end as a Service (MBaaS), which has been developed by Ubiwhere. The
MBaaS is the central component of the EMBERS infrastructure that offers a domain-specific and open,
standardised API to integrate devices that exchange information about traffic and mobility. These
standardised interfaces guarantee a simple integration of existing devices and applications that
already support such specification.

One of the objectives of EMBERS is to bring the MBaaS to the market. In order to do so, extensive
testing is required, with the purpose of strengthening the platform to become market-ready. FIRE+
testbeds will be used to enable several tests to validate the platform’s standard compliance and the
performance. FIT IoT-Lab facility provides a significant number of wireless sensor nodes that can be
configured to support multiple sensor topologies, while FUSECO Playground offers a standard
compliant M2M platform that will emulate certain devices (e.g. parking and traffic sensors), which will
prove the compliance regarding device registration. Both FIRE+ testbeds will be used for load testing
the MBaaS, where the number of sensors, frequency of measurements and payload of sensor
messages can be configured to identify the platform’s limits.

The EMBERS infrastructure needs to be designed to support the planned load testing from multiple
sites. Furthermore, both the MBaaS and the FIRE+ testbeds need to be accessible by third-party
device or application developers. Such involvement will occur thanks to several promotion activities,
as well as specific developer events, such as hackathons, app challenge and open call.

Another advantage of using standardised APIs is to make the MBaaS interoperable with other device
vendors or application developers, instead of being bound to specific equipment, which gives high
flexibility to the operators of such platform. However, there are many standardisation organizations
and industry consortia that are developing standards to address domain or technology-specific
challenges, making it difficult for developers to decide which standard to follow or which protocols to
implement. The OneM2M [1] standard seems to be a promising candidate as its architecture
addresses a horizontal approach on the service layer across verticals.

This deliverable introduces the available components of the EMBERS infrastructure consisting of the
MBaaS, which is a central backend and the sensor nodes of the FIT IoT Lab and FUSECO
Playground. Starting with a high level architecture that describes the interconnection of the
infrastructures as well as the integration of device or application developers. Section 2 one can find
the available devices and tools of the FIRE+ testbeds. Furthermore, it is outline what are the expected
role of this components are and how they will connect to the MBaaS. Which deployment scenarios are
supported by the sensor nodes or the mobility backend are discussed in section 3. Finally, section 4
covers the specifics that needs to be considered by the EMBERS infrastructure regarding the access
of third parties during the planned dissemination events.

EMBERS – D1.2, page 5 of 18

1.1 Generic EMBERS Infrastructure
The central component of the EMBERS infrastructure is the Mobility Backend, which is developed and
operated by Ubiwhere. An essential part of this backend is the device broker since it takes care of the
devices management, which can be either sensors or gateways that aggregate information of one or
multiple constraint devices. If devices have enough computational resources and support application
protocols, they can communicate directly with the broker, avoiding the need for a gateway.
Applications can retrieve sensor data from the backend and provide innovative services targeting to
solve mobility or transport challenges of smart cities.

The generic infrastructure addresses two scenarios. The first is where real applications or devices
connect to the Mobility Backend to provide services for people or customers, which can assert the
market-readiness of the solution and its operations. However, the Mobility platform needs to be tested
from a performance and interoperability perspective. Secondly to evaluate the maximum performance
of the platform regarding connected devices, frequency and payload the devices are generating
simulation is required. The FIRE+ testbeds are used to assess the performance and interoperability of
the Mobility Backend. Afterwards, through the organisation of several events and with third-party
developers (from outside the consortium) using the platform and giving valuable feedback, it will be
possible to strengthen and further enhance the platform.

All external interfaces of the mobility backend that are supposed to communicate with devices or
applications need to be publicly reachable. Therefore, no specific requirements are expected to
interconnect the FIRE+ testbed or any other developer’s application or device with the MBaaS.
Nonetheless, access to the open APIs of the MBaaS will be authorised. Furthermore, it is under
investigation how the communication channel (transportation of the data) can be secured.

Figure 1 - Generic EMBERS infrastructure

EMBERS – D1.2, page 6 of 18

2 Preparation and Enhancement of FIRE+ testbeds

This section reports about the available physical components and tools of the FIRE+ testbeds, which
are namely the FIT IoT-Lab from INRIA and the FUSECO Playground from Fraunhofer FOKUS.
Additionally it outlines the enhancements of the testbeds that where necessary to fulfil the
requirements that have been analysed in T1.1.

2.1 FIT IoT-LAB
FIT IoT-LAB [2] offers a very large scale IoT testbed and offers to IoT designers, engineers,
researchers an accurate open access multi-user scientific tool to support design, benchmarking,
experimentation and accelerate the development of protocols, applications, IoT services and IoT
technologies ranging from low-level protocols to advanced services integrated with Internet/Cloud.
IoT-LAB testbeds are dispersed among six different locations across France (Grenoble, Lille,
Paris, Rennes, Paris, Strasbourg, Saclay) offering access, for the first time, to 2728 wireless
IoT fixed and mobile nodes are equipped with various sensors: Ambient sensor light,
Temperature, Atmospheric pressure and temperature, Tri-axis accelerometer, Tri-axis
magnetometer, Tri-axis gyrometer.

Main services offered include:

• Total remote access to nodes reserved, e.g., allowing users to flash any firmware, without any
condition or constraint. Any language or OS can be used to design, build, and compile
applications;

• End-to-End IP connectivity. Each node could be visible from Internet with end-to-end IP
connection using IPv6 and 6LoWPAN [3] for example;

• Strong support with a set of useful detailed tutorials, OS supports (Contiki [4], FreeRTOS
[5], and RIOT [6]) including full protocol stacks and communication libraries such as
OpenWSN [7] providing open-source implementations of IoT protocol standards;

• Access to the serial ports of all nodes for a real-time interaction, with optional
aggregation; The user can collect and aggregate if he/she wants all serials ports of all
reserved nodes;

• A unique fleet of mobile robots (eg. TurtleBot);

To offer a development environment which is representative of today's range of loT hardware,
two types of IoT-LAB Nodes are deployed, differing by the capabilities of their ON:

The M3 ON features a 32- bit ARM CortexM3 micro-
controller (STM32F103REY), an
AT86RF231 IEEE802.15.4 [8] radio
chip, and sensors. The user can interact with
the M3 ON over its serial port and also
debug it using the JTAG protocol. The M3 ON is
representative of today's state-of-the-art loT
devices.

EMBERS – D1.2, page 7 of 18

Figure 2: IoT-LAB M3 Open
Node

The A8 ON is the most powerful node in the loT-
LAB. It features a 32-bit ARM Cortex-A8 600 MHz
mini-computer, a 32-bit ARM Cortex-M3 micro-
controller, an AT86RF231 IEEE802.15.4 radio chip
and sensors. The A8 ON is representative of more
advanced devices such as set-top gateway and may
run Linux.

Figure3: IoT-LAB A8 Open Node

Two classes of software run on the loT-LAB. The first includes the source code, libraries and tools
available for a user and IoT-LAB nodes programmation. The second is the "back-end" software which
glues together all the pieces of the loT-LAB. Most of the back-end software runs on the servers in
the IoT-LAB backbone network. It is in charge of user management, nodes allocation and
experiment scheduling. The main objective of the back-end software is to allow a user to
interact with all loT-LAB nodes in a reliable and real-time fashion.

A user starts by creating a user account on the IoT-LAB's main website or using his/her OneLab
federation account. He/she then communicates with IoT-LAB through its web portal or REST API that
are available through command-lines tools (eg. CLI tools) to offer a simpler user experience. To
launch an experiment, the user reserves one or more nodes, in one or more sites, for some duration.
To each node are attached some features: mobile/fixed, location and radio chip. After reserving the
nodes, the user can make additional configurations for the experiments, including specify the firmware
image(s) to load on the nodes. The scheduler starts the experiment as soon as the nodes are
available, or at a precise date, if specified. Once an experiment is running, the user has full control
over the nodes reserved and dedicated to him/her. Nodes can be reseted, reconfigured, or
reprogramed individually or globally.

EMBERS – D1.2, page 8 of 18

Figure4: IoT-LAB testbed infrastructure

As part of the project EMBERS and the MBaaS experimentation support, we provide different software
components.

In the first place we developed MBaas application firmwares executed on the IoT-LAB M3 Open Node
during the experiment in charge of reading sensors values. We have defined that we send to the
MBaaS broker device three hardware sensors measurement (eg. temperature, pressure and
luminosity) and one emulate sensor measurement with parking event. This emulation is based on
Poisson discrete probability distribution and could be improve with others distribution model during the
project. Moreover, these firmwares are configurable by user and you can specify the period of sensor
measure. It is also expected that we will test different firmwares implementation with different IoT
embedded Operating Systems (eg. RIOT, Contiki, FreeRTOS) and wireless radio standard protocols
like IEEE 802.15.4e [9] (eg. 6TISCH)

Next we provide experimentation tools (Python scripts) for automate and benchmark the MBaaS
device broker interaction. This part of software must be installed on a gateway hosting in IoT-LAB
testbed (eg. SSH frontend server or A8 node). These scripts use IoT-LAB python libraries for
executing experiment control plane (eg. submit and launch an experiment, choose and book nodes,
flash firmwares) and aggregate all experiment nodes measurement data. Moreover we have
developed device brokers client implementation for register nodes and sending measurement data to
the MBaaS middleware with different protocols (eg. HTTP, CoAP and MQTT). The first implementation
and tests are executed on an open-source device broker Meshblu instance provide by Ubiwhere
partner with HTTP protocol communication.

2.2 FUSECO Playground
FUSECO Playground [10] operated by Fraunhofer FOKUS unifies all the research activities and
toolkits in one testbed to do proof of concept evaluation or to run experiments. One of the toolkits that
is highly relevant for the EMBERS project is OpenMTC [11]. This toolkit is a reference implementation
of the OneM2M standard and supports multiple application protocols. One of the components is the
OpenMTC gateway which enables heterogeneous sensors (e.g. Zigbee or FS20), through the help of

EMBERS – D1.2, page 9 of 18

interworking proxies, to translate the technology specific communication into a standardized protocol
which is understood by the M2M/IoT backend. Thus the OpenMTC gateway will be used to conduct
the interoperability tests.

Figure 5: OpenMTC gateway on Raspberry Pi with attached sensors

OpenMTC is a lightweight software that can be deployed on any device supporting a Linux operating
system. Typically the OpenMTC gateway is deployed on customer of the shelf (COTS) hardware, like
a Raspberry Pi. The latest Raspberry Pi 3 has integrated LAN, Wi-Fi and Bluetooth LE which provides
multiple communication interfaces that can be used to connect to the backend. Other than that the
single-board computer can be easily extended with modules or USB sticks to support additional RF
technologies (LTE, Zigbee etc.). FUSECO Playground supports multiple radio access technologies
that could be used for experimentation.

As the FUSECO Playground is designed to support PoC rather than large scalability test in terms of
available sensor devices, it was decided to implement a load generator. Thus the FUSECO
Playground will be extended to support dozens of emulated sensor devices. Emulation of devices is
needed as it allows to perform benchmarking tests, without the requirement to have them physically
available. The following requirements have been identified. Provide a central and simple interface to
the user for the emulation of devices and sensors or even applications that is remotely accessible.
Users should be able to adjust parameters for their needs by using a configuration file. Design the
software as generic as possible, to support testing of multiple device broker and protocols. As already
explained in D1.1 [12], the testbeds are supposed to benchmark multiple device broker, which are
responsible for the device management of the MBaaS. This includes device registration and
authorization, while each device could contain multiple sensor data. After the execution of the
experiment the results (error rate) should be provided to the user. Figure 3 depicts a high level view of
integration of the load generator into the EMBERS architecture.

EMBERS – D1.2, page 10 of 18

Figure 6: High level architecture of load generator scenario

The picture above shows a typical workflow of an experimenter using the FUSECO load generator. An
experiment is started by sending a configuration file in JSON syntax via RESTful API to the web
server. This file will be forwarded to the load generator. The load generator will parse the given
configuration and setup a specific amount of virtual sensors. After that all virtual sensors will be
registered with the configured device broker (e.g. MeshBlu). Additionally, the load generator will at
least subscribe itself to every virtual sensor once in order to measure latency. If all virtual sensors are
registered successfully, the experiment is started with each virtual sensor sending data in the
configured fashion. When the experiment duration is exceeded, the experimenter is able to acquire the
experiment log (most notably containing the measured latencies) from the web server via a RESTful
API.

Foreseen configuration parameters are the amount of devices, as well as the frequency of information
send and the size of the payload. To make the performance test realistic as possible it is planned to
integrate historical data sets (e.g. parking events) of municipalities are used as input source for the
load generator. The load generator will be implemented to support multiple application protocols (e.g.
HTTP, CoAP, MQTT) and service endpoint that can be defined in a configuration file.

It turned out through internal discussions that the benchmarking will be the first step. Therefore the
load generator developed by Fraunhofer FOKUS will be placed at the Ubiwhere facilities. This will
provide the most accurate results as there are no Internet hops in between that cause additional
latency. For experimenters that are interested in the emulation of sensor data or devices, that are not
currently offered by EMBERS, a dedicated instance of the load generator will be provided at the
FUSECO Playground to support more customized scenarios.

Besides the emulation of sensor data, it is additionally possible to get access to the real sensor data
that are attached to OpenMTC gateways distributed across the FOKUS building. Measurement of
temperature, humidity, air pressure and brightness are supported by the available Zigbee sensors.
The workflow of configuring the OpenMTC gateway is similar to the load generator use case. The
experimenter needs to connect to a web server where he needs to select the real gateway that will be
used for experimentation. Furthermore, the experimenter can configure through a UI of the web server
the interval for querying the sensor data. As soon the configuration is completed the web server
triggers the process on the OpenMTC gateway to start the device broker specific application which
includes the registration procedure of the device including the sensors. Afterwards the OpenMTC
gateway will send updates of the sensor data depending on the previous configured interval.

EMBERS – D1.2, page 11 of 18

3 Deployment Scenarios

EMBERS infrastructure components are supporting multiple deployment scenarios. Several topologies
can be deployed in the backend as well on the sensor node level. Typically one or more sensors are
connected to a gateway, which aggregates the data a forward the information to the backend. The
architecture strongly depends on the capabilities of the sensor devices. While IoT-LAB nodes have the
sensors integrated on board and supporting operating systems with full IP stack, FS20 sensors from
FUSECO Playground are more constraint because they send sensor information via a RF signal, that
needs to be received by a gateway which parses the signal and forwards it to the backend. That is the
reason while currently FUSECO Playground topology capabilities are limited to Point to Point
scenarios. However more complex scenarios are supported by the IoT-LAB which are described in
section 3.1.2. Other than that IoT backends need to adopt to certain conditions e.g. increasing load or
density of sensors inside the infrastructure. That is why section 3.2 discuss multiple deployment
scenarios from the backend perspective and what are potential consequences.

3.1 M2M gateway/sensor deployments

3.1.1 Point to Point
The first deployment scenario is based on “Point to Point” network between an IoT-LAB gateway and
experiment nodes. For this purpose, we use the serial port nodes communication (eg. tcp socket)
accessible by the user during the experiment from IoT-LAB SSH frontend site which acting the role of
gateway. Thanks to experimentation tools, we provide IoT-LAB python libraries for aggregate all the
experiment nodes serial port communication on the gateway. With this scenario we choose and book
the number of M3 nodes required and flash a firmware on them.

Figure 7: Point to Point deployment scenario

This firmware waits a measurement configuration (eg. which sensors and measure period) send from
the gateway by the serial port and start measurement process. It reads sensors values with the period
configuration and write the results on its serial port. The gateway collects the measurement data and
send it to the MBaaS device broker.

EMBERS – D1.2, page 12 of 18

3.1.2 Meshed
In this second deployment scenario we used 6LoWPAN mesh network (IPv6 over Low power Wireless
Personal Area Networks) between an IoT-LAB gateway and experiment nodes. 6LoWPAN is an open
standard defined in RFC 6282 by the Internet Engineering Task Force (IETF). A powerful feature of
6LoWPAN is that while originally conceived to support IEEE 802.15.4 low-power wireless networks in
the 2.4-GHz band like IoT-LAB M3 nodes.

The uplink to the standard Internet (eg. MBaaS cloud instance) is handled by the Access Point (AP)
acting as an IPv6 router (eg. IoT-LAB gateway). It could be done on the IoT-LAB testbed with SSH
frontend site or with an A8 node. The 6LoWPAN network, with experiment nodes (eg. IoT-LAB M3
nodes) are connected to the AP using an edge router (eg. one M3 experiment node) and its serial port
communication. For example, in the case of ContikiOS embedded operating system we use tunslip6
tool which encapsulate IPv6 traffic between AP and the edge router over serial line communication.
Moreover, we use RPL routing protocol defined by IETF in RFC 6550 for route-over the 6LoWPAN
network. It is also expected in this project that we will use 6TiSCH implementation ("IPv6 over the
TSCH mode of IEEE 802.15.4e") for testing the reliability of 6LoWPAN network.

Figure 8: Meshed deployment scenario

Finally, as IoT-LAB M3 nodes demanding ultra-low power consumption we use UDP, lower overhead
and connectionless protocol, and the constrained application protocol (CoAP). Indeed, we wrote
MBaaS application firmwares with CoAP server from which you can send a measurement sensors
configuration and get the measurement data with different CoAP resources.

On the IoT-LAB gateway the experimentation tools send the measurement configuration and
aggregate all the measurement data with CoAP clients and send it to the MBaaS device broker in the
same way of “Point to Point” deployment scenario.

3.2 Server-side deployments
The MBaaS can be deployed on any cloud or physical infrastructure. Therefore, the process of
deploying new instances of the MBaaS can be done at fast pace, since it takes advantage of a
microservices architecture based on Docker. The performance available on the system depends on
the resources available in the machine.

The MBaaS, fully separated as a product from the devices and apps, yet interacting with them via well-
defined RESTful APIs. For optimal performance during the lifecycle of the MBaaS, the deployment

EMBERS – D1.2, page 13 of 18

process should be configured by Ubiwhere's IT team. At this point, we can define, as main deployment
scenarios the following three:

• Single Machine

• Multiple Machine

Detailed descriptions of these scenarios are available in the following subchapters.

3.2.1 Single Machine
On the single machine scenario, the MBaaS is fully deployed on a given server, where the typical
design consists of a device broker, an event broker, an authorization and authentication server and
multiple other services that allow the functionalities of the backend. This architecture is fully modular
and uses Docker containers for deployment purposes. Below, it is possible to find a picture describing
the typical deployment scenario for a single machine, where, for the purpose of this example it is
assumed that the machine contains 2 CPUs, 4GB of RAM and 100GB of storage.

Figure 9: Single machine sample logical architecture

In this scenario, every logical module of the MBaaS architecture belongs to a single instance of a
virtual machine, which despite simplifies the deployment and maintenance processes, turns the
process of scaling the platform into a difficult task, due to the physical limitations of the Virtual
Machine.

3.2.2 Multiple machines
On a multiple machines scenario, the MBaaS architecture will be separated throughout the available
servers. The components of the MBaaS communicate with each other via AMQP or REST APIs. This
allows for seamless communication from every component that is deployed regardless of its machine
or location. Depending on the resources available for each machine, one or more platform
components can be deployed there. For such type of deployment there are two possible scenarios:

• Every server has the same available resources, which means that the deployment order of the
MBaaS components is only taken into account when there is the need for critical components
to allocate more resources (thus separated from the less greedy components), where the
lower resource-consumers can be clustered on a machine. The figure below helps to
understand how the deployment architecture should look like and to clarify this particular

EMBERS – D1.2, page 14 of 18

scenario. With the purpose of simplifying, one assumes that every machine has a single CPU,
with 1GB of RAM and 30GB of storage.

Figure 10 – Multiple machine deployment scenario (Machines have the same resources)

• Each server differs in the resources provided, meaning that the scenario requires particular
attention to the deployment process needs regarding the resources of each machine to enable
optimal performance at every step of the MBaaS flow. To clarify, the figure below shows an
example of this with sample resource values, assuming that, for the purpose of this example,
there were only available the following four machine specifications:

o 1 CPU, 1GB of RAM, 30GB of storage

o 1 CPU, 2GB of RAM, 30GB of storage

o 1 CPU, 1GB of RAM, 30GB of storage

o 1 CPU, 4GB of RAM, 100GB of storage

EMBERS – D1.2, page 15 of 18

Figure 11: Multiple machine deployment scenario (Machines differ on resources)

With this in mind, there can be a sample separation of the backend throughout these
machines:

o VM#1 - Since this machine is responsible for holding the communication bus, device
management and the event broker, with this approach the requirements consist of 1
CPU, 1GB of RAM and 30GB of storage. Considering the available machines, these
specifications are enough to deploy these components.

o VM#2 - This machine holds the logic to the upper-tier APIs and CEP engine; therefore,
the chosen specifications are 1 CPU, 2GB of RAM and 30GB of storage to allow for
better performance due to the amount of computations performed by these
components.

o VM#3 - The authorization server and the payments components usually do not need
much computational power, hence the 1 CPU, 1GB of RAM, 30GB of storage is
enough.

o VM#4 - The last, and most powerful machine, with 1 CPU, 4GB of RAM, 100GB of
storage, is responsible for the search/logging system of the platform since it is
imperative to allow for better and quicker debugging when needed, by the means of
an efficient centralised logging module.

EMBERS – D1.2, page 16 of 18

4 Event Infrastructure Set-Up

At each event, an instance of the MBaaS will be available. This instance will be configured by
Ubiwhere and will be used at every event. Using the same instance enables the optimisation of the
preparation time for each of the events and to have more data available during the events. Every
deployed instance will have datasets available from cities that have provided them, therefore the
MBaaS will be deployed with data so that every user can experiment. Moreover, data added during the
events is used in the subsequent ones to improve the overall quality of the datasets, the quantity and
diversity of the available data. Moreover, it is important to clarify that user information will not be
shared throughout the events leaving each user with a registration procedure for each of the events.

The registration procedure can be completed by using a web app developed with this objective. After
registration, the users can access the same web app to register their devices, regardless of their
protocol or testbed. This we app also serves to register user’s own devices, if that is the case.

Lastly, to improve the ease of use of the MBaaS and understand its APIs documentation is available
during every event. This documentation will be hosted at APIary (http://docs.emberscity.apiary.io/#),
which allows the user to look at the API specification and try the API calls to a mock server which
returns sample response data. The mock server will help bring ideas to life by interacting with a real
API from an early stage.

EMBERS – D1.2, page 17 of 18

5 Conclusions

One of the main objectives of the EMBERS project is to make the MBaaS platform from Ubiwhere
market ready. This should be achieved through benchmarking and interoperability testing, where the
FIRE+ testbeds (FIT IoT-LAB, FUSECO Playground) will be utilized. The results of the stress tests will
help Ubiwhere to improve the reliability and scalability of the MBaaS. Furthermore, third-party
developers should use the EMBERS infrastructure, over the period of the project organized events.
This will help Ubiwhere to get valuable feedback from developers outside the project consortium if the
platform fulfils the requirements of the market. In this deliverable it is described what are the functional
elements of the EMBERS infrastructure and which role they are going to play to reach the objective.
There are a lot of IoT middlewares available out in the market. However the market acceptance
strongly depends on the usability and interoperability. While supporting multiple IoT standards and
involving the mobility and transport community EMBERS is placing the corner stone for a successful
outcome of the project.

EMBERS – D1.2, page 18 of 18

6 References

[1] oneM2M, „oneM2M,“ [Online]. Available: http://www.onem2m.org/.

[2] INRIA, FIT IoT-LAB, [Online]. Available: https://www.iot-lab.info.

[3] 6LoWPAN, [Online]. Available https://tools.ietf.org/html/rfc6282

[4] Contiki, [Online]. Available http://www.contiki-os.org/

[5] FreeRTOS, [Online]. Available http://www.freertos.org/

[6] RIOT, [Online]. Available https://riot-os.org/

[7] OpenWSN, [Online]. Available https://openwsn.atlassian.net/

[8] IEEE 802.15.4, [Online]. Available http://www.ieee802.org/15/pub/TG4.html

[9] IEEE 802.15.4e, [Online]. Available http://www.ieee802.org/15/pub/TG4e.html

[10] FRAUNHOFER FOKUS, „FUSECO Playground,“ [Online]. Available:
https://www.fokus.fraunhofer.de/go/en/fokus_testbeds/fuseco_playground.

[11] FRAUNHOFER FOKUS, „openMTC,“ [Online]. Available: http://www.openmtc.org/.

[12] R. V. (UW), "http://embers.city/," 2016. [Online]. Available: http://embers.city/wp-
content/uploads/2016/05/EMBERS_Deliverable_D1_1_v0_2.pdf.

